
STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST

LORRIS TOOLBOX

Set of tools for developement

and control of robots

Vojtěch Boček

Brno 2013

STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST

Obor SOČ: 18. Informatika

LORRIS TOOLBOX

Set of tools for developement and

control of robots

Author: Vojtěch Boček

School: SPŠ a VOŠ technická,

Sokolská 1, 602 00 Brno

Consultant: Jakub Streit

Brno 2013

Acknowledgement

Thanks to Jakub Streit for his advices, help, and much patience he provided

during my work on this project, to Martin Vejnár for his Shupito program-

mer, to Mgr. Miroslav Burda for great help with text part of this work and

last but not least, to Bc. Martin Fouček for his advices and help with Qt

Framework. Thanks goes also to DDM Junior for their support.

This work was made with financial support from JMK a JCMM.

Annotation

This work describes a complex set of tools designed for developement and

control of any device capable of connecting to serial port or TCP socket.

Because Lorris isn’t a simple application nor is it a toolbox focused on

one narrow area of use, because the whole set is continuously growing and

because scope of use for all features and modules of Lorris is too big, it is

impossible to briefly describe it all in limited scope of annotation.

To get better notion of what can one achieve with Lorris, please refer to

introductory chapter of this work (English version of this text is available

on enclosed CD as PDF file).

Main asset of this software package is the ability to significantly speed-up

and simplify developement and testing of various applications for microcon-

trollers, typically programming and controlling various kinds of robots.

Key words: binary data analysis, programming and control of robots,

developement for microcontrollers, programming of microchips

Contents

Introduction . 3

Module: analyzer . 3

Module: programmer . 4

Module: terminal . 4

Module: proxy between serial port and TCP socket 4

1 Motivation . 5

1.1 Requirements for application 5

1.2 Present applications . 5

1.3 Comparison of applications 7

2 Lorris . 7

2.1 Website and repository . 7

2.2 Application’s structure . 8

2.3 Session . 10

2.4 Automatic updates . 10

3 Module: Analyzer . 11

3.1 Filters . 14

3.2 Widget: number . 15

3.3 Widget: bar . 16

3.4 Widget: color . 17

3.5 Widget: graph . 17

3.6 Widget: script . 19

3.7 Widget: circle . 21

3.8 Widget: canvas . 21

3.9 Widgets button and slider 22

3.10 Widget: input . 23

3.11 Widget: status . 24

3.12 Widget: terminal . 25

4 Module: Proxy between serial port and TCP socket . . . 26

4.1 Proxy tunnel . 26

5 Module: programmer . 27

5.1 Shupito programmer . 28

1

5.1.1 UART tunnel . 29

5.2 Bootloader avr232boot . 29

5.3 Bootloader AVROSP . 29

6 Module: terminal . 30

7 Joystick support . 31

8 Usage examples . 32

8.1 Color sensor testing . 32

8.2 Encoder testing . 33

8.3 Tuning of PID regulator . 38

8.4 Developement of robot for Eurobot 2011 competition 39

8.4.1 Robot’s frame . 40

8.4.2 Debugging and adjusting of sensors 41

8.4.3 Programming of robot’s reactive behavior 42

9 Android application . 43

9.1 Programmer . 45

9.2 Terminal . 46

10 Real world usage . 47

Conclusion . 48

ATTACHMENT A: Third-party libraries 50

ATTACHMENT B: Licenses 51

ATTACHMENT C: References 52

ATTACHMENT D: Large images 57

ATTACHMENT E: List of images 60

2

Introduction

Lorris is extensive set of tools which all share the same goal – to help with

development, debugging and control of electronic devices, mainly robots.

This chapter briefly describes the most important features of all modules

and each module is throughly described in it’s own chapter further on.

Module: analyzer

• Its main purpose is to graphically display data from the device.

• Analyzer uses widgets to display data – small ”windows”, each show-

ing certain part of data.

• Each widget has individual settings and the user can place them any-

where on the workspace.

• Thanks to widgets, it is possible to assemble interface suitable for

virtually any device.

• Several types of widgets are available in Lorris, for example Number,

Color, Column bar, Circle (displaying angle within circle) or Graph.

• Analyzer is also ideal for easy displaying of data from components for

which using only numbers is not eligible, e.g. color sensor.

• Some widgets can also send data to the device. Consequently, it means

that beside displaying data, widgets can also control the device.

• Of all the widget types, Script is the most notable one. The user writes

his own script, which processes the incoming data. User’s script can

use other widgets and other parts of Lorris, which means that it can

display or in other ways interpret virtually any data.

• Using script, the user can modify the behavior of Lorris itself.

3

Module: programmer

• Graphical interface for several types of bootloaders and programmers

of microchips.

• It can write program to chip, read and erase chip’s memory or program

chip’s fuses.

• Official GUI for Shupito programmer.

• Shupito is microchip programmer. One end goes to computer, the

other one to the chip – you need programmer to program some types

of chips.

Module: terminal

• Regular terminal – displays incoming data either as text or as hex-

adecimal byte dump.

Module: proxy between serial port and TCP socket

• Proxy creates server connected to serial port. The serial port is then

accessible from anywhere via the internet.

• It makes it possible to debug, control or otherwise communicate with

the device via internet network.

Enclosed CD contains promotional poster as PDF file.

4

1 Motivation

I’m a member of one of the teams which build robots for various compe-

titions, and I’ve met a problem while we were building one of our robots

– such robot usually contains a pretty large number of various sensors (ul-

trasound range meters, encoders for measuring covered distance, buttons

which detect collision with borders of the game field ...), and there was no

way to show data from those sensors comfortably and clearly.

In order to simplify and speed-up development of the robot, I decided

to find some computer application which would show data from the robot

in clear and well-arranged manner. Requirements which I set for this appli-

cation are specified in chapter 1.1.

1.1 Requirements for application

I require following features from the application:

1. Ability to process data from device and show them clearly

2. Support for many formats of incoming data

3. Quick and simple to use

4. Support for other operating systems than MS Windows

5. Low price

6. Ability to easily expand program, ideally open-source

7. No dependencies on other applications (eg. MS Office Excel)

1.2 Present applications

I’ve found only several programs which have at least similiar function (read-

ing data from serial port and displaying them). Basically only two types of

applications are available – commercial, which cost a lot of money (and still

5

don’t meet all the requirements) or applications which can display data in

only one format, typically in graph.

• SerialChart[1] is open-source program1 which can parse and display

data from serial port. SerialChart is simple and well arranged, but it

can display data only in graph and it is configured by hand-written

configuration file.

• WinWedge[2] is commercial program. It can process data from serial

port and display them as a graph in MS Excel or as a web page. It

can also send commands back to connected device, but it has bad user

interface and the need for another program (like MS Excel) to actually

show the data is not ideal. It is available only for MS Windows and

basic version costs $ 259.

• Advanced Serial Data Logger[3] is designed to be used primarily

to collect data from serial port and export them, thus you have to use

another application to display the data (eg. MS Excel), similarly to

WinWedge.

• StampPlot Pro[4] can process incoming data in widgets created by

user, but it is not simple to use, it is not open-source, it is available

only for MS Windows and I haven’t managed to get it working under

Windows 7.

• LabVIEW[5] is very large software package with long history and

is is possible to use it for wide variety of operations – various labo-

ratory measurements, analysis of data signals, controlling of robots,

controlling of whole systems for laboratory measurements and much

more. However, LabVIEW is closed proprietary software and because

of its specialization, it is also very expensive. Basic license costs about

$ 1150.

1Program with publicly available source code, free to modify and use

6

1.3 Comparison of applications

Following table lists features of each application. Numbering of require-

ments matches the list in chapter ”Requirements for application”.

Requirements 1 2 3 4 5 6 7

SerialChart " % " % " " "

WinWedge % " " % % % %

Advanced Serial Data Logger % " " % % % %

StampPlot Pro " " % % " % "

LabVIEW " " % " % % "

I’ve decided to write my own program which will meet all the require-

ments because no such application exists.

2 Lorris

Lorris is a program written in C++ with use of Qt Framework[6]. Qt is

multiplatform framework, which (among other things) makes it possible

to run Lorris on multiple operating systems – I’m using Debian Linux[7]

(Wheezy, 64bit) and Windows 7 for testing.

2.1 Website and repository

Lorris’ GIT2 repository is hosted on GitHub[8]. GitHub also provides host-

ing for project’s website, which contains links to prebuilt Lorris binaries

for Windows, description of program, video introduction to Lorris (6 min.),

screenshots of Lorris and information how to build Lorris under MS Win-

dows and Linux.

• Repository: https://github.com/Tasssadar/Lorris

2GIT – distributed version control system

7

https://github.com/Tasssadar/Lorris

• Website (Czech):

http://tasssadar.github.com/Lorris/cz/index.html

• Website (English):

http://tasssadar.github.com/Lorris/index.html

• SOČ presentation:

http://www.sokolska.cz/soc-2012/bocek-vojtech-lorris-sada-nastroju-pro-robotiku/

There is still an ongoing developement in application’s repository.

2.2 Application’s structure

The program is designed as modular application, so that it can accommo-

date several parts which, although they are separate, share the same area

of use. Base part of application provides connection to device (e.g. to robot

or to development board with chip), tab-based user interface and storage

for application settings, but data processing itself takes place in individual

modules.

Modules are opened as tabs, much alike pages in web browser. Lorris

can open several windows at once and it can split each window to multiple

parts like presented in image 2 – window is divided in the middle, you can

see two tabs at once. The one on the left is analyzer and the other one is

terminal.

Connection options:

• Serial port

• Shupito Tunel (virtual serial port, more in chapter 5.1.1)

• TCP socket3

• Loading data from file

3Transmission Control Protocol – connection via internet.

8

http://tasssadar.github.com/Lorris/cz/index.html
http://tasssadar.github.com/Lorris/index.html
http://www.sokolska.cz/soc-2012/bocek-vojtech-lorris-sada-nastroju-pro-robotiku/

It is possible to connect multiple modules to one device.

Figure 1: Tab creation dialog

Figure 2: Window divided to multiple parts

9

2.3 Session

Lorris can save everything user opened (tabs, their layout, connection, data

of each tab, ...) as session. User can later load saved session and thus return

to his previous work. Lorris automatically saves session before it is closed,

so when user starts Lorris again, all his work is in the same state as it was

before he left.

2.4 Automatic updates

Lorris can update itself under MS Windows. It checks for new version on

start, and if there is one available, it shows little notification:

Figure 3: New update notification

In case user confirms the update, Lorris closes itself and runs little up-

dater application. Updater shows changelog and downloads new version

and installs it.

Figure 4: Ongoing update

10

3 Module: Analyzer

Figure 5: Module analyzer

This module parses incoming data (structured as packets) and displays

them in graphical widgets. Application saves processed data into memory –

user can go through received packets using slider and textbox in upper part

of the window. All data (received packets, packet structure and widgets

positions and settings) can be saved to file.

Packet structure is configured in dialog window (image 7). It is possible

to set packet’s length, endianness4, packet’s header and its content – static

data (”start byte”), dynamic lenght od packet and command and device

ID. Packets can be later filtered by command or device ID.

4Endianness – order of bytes in numbers

11

Incoming data show up in upper part of the window when packet struc-

ture is set and user can then ”drag” widgets from the list in right part of the

window to workspace. Data are assigned to widget again using drag&drop,

this time user has to drag first byte of data to widget.

Widget then displays data from that byte (or several bytes if needed).

Assigned byte is highlighted when user puts mouse over the widget, so that

he can find out which data belong to which widget.

Widget settings are available in context menu under right-click. User can

set title and other parameters different for each widgets – these parameters

will be described in each widget’s section later. Widgets can also be locked,

which means the widget can’t be closed nor moved or resized.

It is possible to precisely position widgets using grid or by using ”alig-

ment lines” (see image 6). User can also easily clone widgets by moving

them while holding the control key.

Some widgets might profit from following feature: if user grasps widget

with mouse as if he wanted to move it and then ”shakes it” from right to

left, the widget will expand itself to cover all of the visible workspace. When

it is moved, it will shrink to it’s original size.

Figure 6: Widget aligment using grid and lines

12

Figure 7: Packet structure dialog

13

(a) List of widgets (b) Assigning data using

drag&drop

Figure 8: Widgety

3.1 Filters

Analyzer can filter incoming data and each filter may contain several con-

ditions, which determine if packet is filtered out or not.

Figure 9: Filter settings

14

Each condition can check command or device ID from packet’s header,

value of byte in packet or it can run simple user script. Thanks to the script,

it is possible to write almost any kind of condition.

1 // Return true if passes, false if it

2 // should be filtered out

3 function dataPass(data, dev, cmd) {

4 return false;

5 }

Example 1: Script filter condition

3.2 Widget: number

Figure 10: Widget: number

This widget displays integers (both signed and unsigned, 8 to 64bits)

and decimal numbers (single-precision5, 32 and 64 bit). Widget can align

the number to max lenght of it’s data type and format as follows:

• Decimal – number as base 10

• Decimal with exponent – uses exponent to display big numbers, avail-

able only for decimal numbers

• Hexadecimal – number as base 16, available only for unsigned numbers

• Binary – number as base 2, available only for unsigned numbers

5Standard floating-point number format used in C and other languages (IEEE 754-

2008)

15

Another feature is option to recalculate widget’s value using formula

specified by the user. This is useful for example while showing data from

infrared range finders, because their output value must be converted to

centimeters using equasion. Formula can look like this:

2914/(%n+5)-1

where %n is alias for number which would otherwise be displayed in the wid-

get. This particular formula converts distance measured by Sharp GP2Y0A41

infrared range finder to centimeters.

3.3 Widget: bar

Figure 11: Widget: bar

Data in this widget are displayed as bar. User can set data type (same as

widget number), orientation (vertical or horizontal) and range of displayed

values. It can also use formula to re-calculate it’s value in the same way as

widget number.

16

3.4 Widget: color

Figure 12: Widget: color

This widget shows incoming data as colored rectangle. Supported color

formats:

• RGB (8b/channel, 3x uint8)

• RGB (10b/channel, 3x uint16)

• RGB (10b/channel, 1x uint32)

• Shades of gray (8b/channel, 1x uint8)

• Shades of gray (10b/channel, 1x uint16)

Widget supports brightness correction for all colors at once or for each color

of RGB space separately.

3.5 Widget: graph

This widget shows data in graph – order of the data is on the x axis and data

values on the y axis. User can set name, color and data type of each graph

17

Figure 13: Widget: graph

curve and automatic scrolling, sample size and scale for graph. Graph also

has legend which shows curve’s names and colors, and curves can be hidden

by clicking at their names in legend. Scale of each axis can be changed

by scrolling the mouse wheel while hovering the cursor above axis. If the

mouse is above graph area, mousewheel changes scale of both axes at once.

Figure 14: Curve settings dialog

18

Figure 15: Widget: script

3.6 Widget: script

This widget uses user-written script to process data. Script can be writ-

ten in Python or QtScript[9] (language based on ECMAScript6, same as

JavaScript7, which means JavaScript and QtScript are very similar).

Script can process incoming data, react to keypresses and send data to

device. Basic output can be displayed in terminal (image 15), but it is also

possible to use other widget types to show data (number, bar, ...).

Script editor has built-in code samples, for example how to set value

of existing number widget, how to send data to device or how to react to

keypresses (on image 16 they are hidden under the lightbulb icon). Editor

also has link to automatically generated documentation, which is available

on http://technika.junior.cz/docs/Lorris/.

6ECMAScript – scripting language accoring to stadard ECMA-262 and ISO/IEC

16262
7JavaScript – scripting languge used primarily on web

19

http://technika.junior.cz/docs/Lorris/

Figure 16: Script editor

20

3.7 Widget: circle

Figure 17: Widget: circle

Widget circle shows incoming data as angle in circle, which is useful for

example when displaying rotation of robot’s wheel. Incoming data can be

in degrees, radians or just number in certain range (eg. data from 12bit

encoder in range from 0 to 4095).

3.8 Widget: canvas

Figure 18: Widget: canvas

21

Canvas can be only controled from script and is supposed to be used to draw

2D graphics. It can draw lines, rectangles, circles and ellipses. Following

code sample will draw red cross in the center of the widget.

1 Canvas.setLineColor("red");

2 Canvas.setFillColor("red");

3 // x, y, width, height

4 Canvas.drawRect(55, 10, 20, 110);

5 Canvas.drawRect(10, 55, 110, 20);

Example 2: Drawing to canvas

3.9 Widgets button and slider

Figure 19: Widgets button and slider

These two widgets are used for interaction with script – callback method in

script is invoked on button click. In this method user can for example send

a command to robot. Similarly, callback method is invoked after moving

slider, so that user can for example change robot’s movement speed. Key-

board shortcut can be assigned to button ”click” action and for slider to

gain focus, so that user can move it using arrow keys.

22

1 function Slider_valueChanged() {

2 appendTerm("Slider value: " + Slider.getValue() + "\n");

3 }

4

5 function Button_clicked() {

6 appendTerm("Button clicked\n");

7 }

Example 3: Slider and button callbacks

3.10 Widget: input

Figure 20: Joystick settings in widget input

This widget is also for interaction with script (user input), but script also

defines interface itself – the widget is empty by default and script has to

create UI components, for example button or text field. This widget is a bit

more complex, but it can create any of the UI components Qt Framework

offers – buttons, slider, text fields, combo boxes and so on. Code sample 4

creates UI from image 20.

23

1 // args: Qt widget name, stretch value

2 var joyList = joy_settings.newWidget("QComboBox");

3 var maxSpdLabel = joy_settings.newWidget("QLabel", 1);

4 var maxSpd = joy_settings.newWidget("QSpinBox");

5 var turnSpdLabel = joy_settings.newWidget("QLabel", 1);

6 var turnSpd = joy_settings.newWidget("QSpinBox");

7 var invert = input.newWidget("QCheckBox");

8

9 // set QLabel text

10 maxSpdLabel.text = "Max speed:";

Example 4: Adding UI components to widget input

3.11 Widget: status

Figure 21: Widget status

Status is designed to show state of for example button (pressed/released)

or error status from encoder (0 = okay, other values are error codes). User

assigns states to incoming values (state consists of text and it’s color, see

image 22) and widget then shows active states. It supports ”Unknown

value”, which is shown when incoming data don’t match any defined status.

24

Figure 22: State definitions dialog

3.12 Widget: terminal

Figure 23: Widget terminal

This widget exists only for convenience of the user, it’s widget script with

preset code working exactly as terminal (sends keypresses, shows incoming

data). User can edit predefined script, just like it was regular widget script.

25

4 Module: Proxy between serial port and

TCP socket

Figure 24: Proxy between serial port and TCP socket

Simple proxy which transfers data between serial port and TCP socket.

It creates server the user can connect to from Lorris or other program on

different computer. Data are transfered between serial port and connected

clients.

4.1 Proxy tunnel

This module also adds new virtual connection – ”proxy tunnel”. If another

Lorris module uses this connection, it can send and receive data from all

clients connected to proxy. This can be used to for example generate data

in analyzer and then send them to multiple TCP clients.

26

5 Module: programmer

Figure 25: Module programmer

This module acts as graphical interface for several types of programmers and

bootloaders. The interface has two modes – full (image 25) and minimal (im-

age 26). Full interface contains all buttons and settings for programming all

memories of the chip, minimal interface contains only button which flashes

main memory and button to stop chip. Minimal interface is convenient

when using the split feature as demonstrated in image 26, because it uses

only a small amount of space.

27

Figure 26: Minimal interface of module programmer (left) along with

terminal

5.1 Shupito programmer

Shupito is microchip programmer created by Martin Vejnár. It can program

microcontrollers using ISP8, PDI9 and JTAG10 interfaces.

Module programmer in Lorris is official interface for Shupito program-

mer. Most of Shupito communication is written by Martin Vejnár.

8In-system programming – interface which can programm chips directly on their PCB
9Program and Debug Interface – interface by company Atmel with features similar to

ISP
10Joint Test Action Group – interface standard IEEE 1149.1 which can be used to

program and debug chips

28

5.1.1 UART tunnel

Shupito can create tunnel11 for UART interface from programmed chip to

computer. Lorris can use this feature – active tunnel creates new virtual

connection and other modules can connect to it.

5.2 Bootloader avr232boot

Author of this bootloader is also Martin Vejnár. Avr232boot supports only

Atmel ATmega chips and it is inspired by reference bootloader code for

these chips, but it is designed to be as small as possible. Originally, it could

only program flash memory of the chip (the one where program is stored),

I added support for programming and reading of EEPROM12 memory.

Lorris can use this bootloader to program flash memory and read and

program EEPROM.

5.3 Bootloader AVROSP

AVR Open Source Programmer is protocol used by several bootloaders by

Atmel for chips ATmega and ATxmega. Lorris can use this protocol to

program and read both flash and EEPROM memory of the chip.

11Direct connection between programmed chip and the computer via programmer
12Flash memory which keeps data even without electricity. It is used to store for

example program settings.

29

6 Module: terminal

Figure 27: Module terminal

Fundamental tool for every developer, classic text terminal. It shows in-

coming data in either text mode or as hexadecimal values of each byte and

sends keypresses.

User can set terminal’s colors, font size, which sequence of control char-

acters should be sent after return key press and behavior of several control

characters (for example if character \n should create new line or not).

30

7 Joystick support

Lorris supports joystick in module analyzer to for example control robot.

At first, I’ve used SDL[11] library to access joystick, but it was not really

suitable for my use – SDL is video game library, joystick support is only

one of many subsystems this library contains. It’s architecture also wasn’t

ideal to use in Lorris.

I haven’t found any suitable replacement of SDL, so I wrote my own

library.

It is called libenjoy, it works under Windows and Linux and it is very

small and simple. One major advantage over SDL is that it can remember

connected joysticks – if you disconnect joystick and then plug it in again

(because you want to reorganize cables on your desktop or because of bad

USB connection), it will open the joystick again by itself – without any user

interaction.

Libenjoy is released under GNU LGPLv2.1[26] license.

• GIT repository: https://github.com/Tasssadar/libenjoy

31

https://github.com/Tasssadar/libenjoy

8 Usage examples

8.1 Color sensor testing

Situation: I’m builing robot for some competition (Eurobot, RobotChal-

lange, ...) and I want to use color sensor to direct the robot. I also want to

test the color sensor, so I’ve made simple circuit with chip and color sensor.

Chip will instruct the sensor to measure the colors and send color values to

computer via UART interface.

Solution: I use Shupito to program the chip and it’s shupito tunnel to

read data from UART interface. I connect analyzer module to shupito tun-

nel and then use widget color to show me color measured by the sensor.

Figure 28: Color in analyzer module

32

8.2 Encoder testing

My schoolmate Marek Ortcikr made SOČ named Modular building blocks for

robots (Modulárńı stavba robota). One of the blocks was magnetic encoder.

This encoder looks like another wheel for the robot, but little magnet is

placed in wheel’s axis. Encoder chip placed directly in front of the magnet

detects orientation of magnetic field generated by the magnet and therefore

rotation of the wheel itself.

Encoder is able to calculate distance covered by the robot and it’s speed

and acceleration by monitoring changes in wheel’s rotation.

Figure 29: Magnetic encoder

Lorris was used to demonsrate encoder’s function on national tier of

SOČ competition. Whole interface can be seen on image 42 on page 57,

following text addresses each part individually.

33

Figure 30: Rotation of the wheel

Widget circle is used to represent current rotation of encoder’s wheel.

Current value read from encoder (0 to 4095) is placed in top right corner,

number in left corner are values converted to radians and degrees.

Values in widget bar named ”Gain” represent strength of the magnetic

field, thus how far is the magnet from the encoder’s chip. Value is in range

from 0 to 63, ideal is about the middle of this range.

Figure 31: Covered distance

This is widget number displaying covered distance in millimeters. En-

coder sends this value in 1
4096

of wheel’s circumference, so formula %n/32.5949

has to be used to convert it to millimeters.

34

Figure 32: Speed and acceleration

Current speed and accelertaion are displayed in two widgets number,

and widget graph underneath shows speed as red curve and acceleration as

the blue one.

Figure 33: Encoder’s status

Encoder’s chip also sends status informations. If everything is okay,

it sends number 0x0, if some problem is encountered, it returns one of the

error codes (e.g. 0x8 means that there is no magnet present). Widget status

shows current error code and color according to informations from encoder.

35

Figure 34: Encoder’s controls

These button and input widgets are here to be used to control the en-

coder. Button ”reset” resets distance counter to zero, button ”clear” sends

command to clear error code (it still stays even if cause of the error was

fixed, it has to be manually cleared) and button ”Control” starts/stops

data stream from the encoder. All of these widgets are connected to script

(image 42 does not contain script widget because it didn’t fit the window)

which reacts to button clicks by sending appropriate commands to encoder.

36

1 var run = true;

2 function reset_clicked() {

3 sendData(new Array(0xFF, 0x01, 0x01, 0x00));

4 }

5 function clear_clicked() {

6 sendData(new Array(0xFF, 0x01, 0x01, 0x01));

7 }

8 function startStop_clicked() {

9 run = !run;

10 startStopBtn.text = run ? "Stop" : "Start";

11 sendData(new Array(0xFF, 0x01, 0x02, 0x02, run ? 1 : 0));

12 }

Example 5: This script sends commands to encoder

37

8.3 Tuning of PID regulator

Situation: Robot can’t go straight because each motor has slightly differ-

ent speed. I decided to solve this problem using PID regulator. But PID

regulator needs several constants to be correctly set.

Solution: Robot’s program is sending current motor speed and PID con-

stants values to computer and also allows changing those constants via

UART interface. This program is flashed into robot over bluetooth using

avr232boot bootloader – I don’t have to use any programmer, which would

require cable connection.

I use widgets number and graph to show current PID constants and

speed of both motors. Then I write simple script which will change PID

constants after keypress and starts/stops robot.

I’ve used this process to tune PID regulator on my 3pi[12] robot. I’ve

attened to Line Follower Standard competition on Robotic Day 2012 in

Prague[13] with this robot and I’ve won the second place from total of 22

robots.

Figure 35: PID regulator tuning

38

8.4 Developement of robot for Eurobot 2011 compe-

tition

Usage of my Lorris program is exaplained here using example case of robot,

which was developed on our school (SPŠ a VOŠ technická, Sokolská 1, Brno)

in 2011 to compete in Eurobot contest.

Goal and game mechanics are different each year, in 2011 the goal was to

play something like simplyfied chess game. Game fields was divided to red

and blue squares and upon it were ”pawns” (yellow discs) and robots had

to move the pawns to squares of their color or make ”towers” by putting

pawns top of each other. Winner was the robot with the most points, which

were awared for each pawn on square of robot’s color and for built towers.

In addition to that, robot’s had to detect each other in order not to collide

(e.g. using ultrasound range finders). For complete rules, results and more

informations, see the web page of Eurobot 2011[16].

Most pressing need for tool, which would let us test and debug all of the

robot’s functions and components quickly and easily, has arisen. Mainly

usage of the Analyzer tool is presented here, due to the fact that it is the

most visible part of the program. Other tools (Programmer, Terminal) were

also used, for example for writing program into the robot’s chip.

This example contains simple user interface for controling, testing and

debugging of our robot, but this interface can also be used for other robots.

You can also create new interface to fulfill your needs, for example when

the robot is too atypic and requires different type of controls.

39

8.4.1 Robot’s frame

Body of the robot was constructed first and even in this early stage, my

Lorris program was already used. We needed to test if all the motors and

servos work properly and how exactly they behave, so I assembled a small

group of widgets in Lorris, which would allows to control the robot via

joystick. Several widgets were used, namely Script, which was reading data

from joystick, calculating the speed values for motors and sending them to

the robot. Next, widget Input, which contained settings joystick parameters

and lastly, 2 widgets number with motors’ speeds.

40

8.4.2 Debugging and adjusting of sensors

When the mechanical frame was complete and tested, all sensors were added

to the robot. After that, interface to actually see sensor values was needed,

so I created interface for this purpose in Analyzer. It uses mainly script,

number color and status widgets. Each and every one of these widgets can

be moved around Analyzer’s worspace and resized. That makes it possible

to place widgets so that their positions coresponds with their real positions

on the robot. Top view appears to be ideal for this task.

41

8.4.3 Programming of robot’s reactive behavior

Peak of the developement was programming of its behavior on the game

field. For this occasion, widget script in my Lorris program was used to

large extent. Scripting enviroment which encapsulated robot’s basic com-

mand sets was created in this widget. These command sets allows us to

create more complicated behavioral patterns for the robot. It would be

possible to write script for the robot directly, but this enviroment consider-

ably simplified and sped up the developement. Another fact is also worth

noticing – widget Script was used here not only to control the robot, but

also to improve functionality of the Analyzer tool itself.

In this example, I use simple ”actions”, which are executed by the robot

step by step. Each action has 3 main parameters – direction of movement,

when the robot should stop and what should it do when it arrives at it’s

target destination. Each action can be changed directly in the scripting

enviroment, bypassing the need to re-program robot after every change. All

other parts of Lorris are still working, even when the robot is controlled

by the script. That makes it possible to keep track of robot’s state as well

as all his sensors and quickly find the source of possible unexpected behavior.

You can find image no. 43 which belongs to this part of the text in at-

tachments on page 58.

42

9 Android application

Figure 36: Lorris mobile

Application for Google Android[18] platform is the next step in Lorris’ de-

velopement, because mobile devices with this operating systems are almost

always at hand and are sufficient to quickly solve smaller problems.

Application Lorris mobile acts as portable addition to desktop version

of Lorris – it may not have all the features of desktop version, but helps

when you need to quickly correct or debug something out in the field.

App works on all tablets and phones with Android OS version 2.2 and

higher, it is optimized also for bigger tablet screens and can be obtained

in official distribution channel of Android application – in Google Play

Store[19]. You can find it by searching for ”Lorris”.

Lorris mobile has similiar architecture as desktop Lorris. User has to

create session first, so that everything he opens can be saved (image 37).

After user loads the sessions, he gets to main screen of the application,

where he can open modules in tabs, much like in desktop Lorris (image 38).

43

Figure 37: Lorris mobile – session selection

Figure 38: Lorris mobile – switching tabs

44

9.1 Programmer

Figure 39: Lorris mobile – programmer

Module programmer can program chips using bootloaders avr232boot and

AVROSP and also using Shupito programmer, if the device has USB host

capabilities.

This part of Lorris mobile uses pieces of native code from desktop Lorris,

which means the code is faster and easier to maintain.

45

9.2 Terminal

Figure 40: Lorris mobile – terminal

Classic terminal. Is has most features of the terminal in desktop version – it

displays data (as text or hexadecimal values), sends keypresses and user can

set terminal’s colors, font size and which control characters are sent after

return key press.

46

10 Real world usage

Members of some of the technical clubs on DDM13 Junior[21] in Brno be-

came the first users of Lorris toolbox on the very beginning of its devel-

opment several years ago. Lorris helps there with developement of various

devices, mainly robots, and kids who learn how to program microchips use

Shupito programmer and thus also the Programmer module in Lorris. Mod-

ules terminal and analyzer are also useful during microchip programming

lessons, terminal for simple communication with the chip and later analyzer

for more advanced data processing.

Lorris is ideal for use in DDM Junior also because it is free – bigger

company which makes microchip applications would probably get expen-

sive commercial program similar to Lorris or develop its own single-purpose

applications. However, solution used by large companies is somewhat un-

accessible for state-funded institutions.

Nowaday Lorris has about 20 users on DDM Junior alone. Number of

users however rising thanks to gradual spreading of Shupito programmer

among users in whole Czech Republic.

I use Lorris whenever I work with robots and/or microcontrollers – to display

data, program chips or control whole devices. Following list presents only

some of the most significant applications made by other Lorris users:

• Development of several robots for this year’s Robotic day[17]

• Programming of widge variety of microchips, using either Shupito pro-

grammer or bootloaders

• Development of Shupito itself

• Development of cheap logic probe

• Debugging of chips for control of three-phase motors (i.e. drivers)

13D̊um dět́ı a mládeže – Organization which does clubs, camps or trips for kids

47

• Developmnet of system for controlling of up to 128 RGB LEDs for

illumination of model plane

• Construction and programming of digital radio transmitter with ARM

processor (semestral work)

• Developmnet of line following robot (graduation work)

• Tuning of PID controller

Conclusion

After several years of developement, I can certainly say the application

meets all the requirements declared in chapter 1:

" 1. Ability to process data from device and show them clearly

" 2. Support for many formats of incoming data

" 3. Quick and simple to use

" 4. Support for other operating systems than MS Windows

" 5. Low price

" 6. Ability to easily expand program, ideally open-source

" 7. No dependencies on other applications (eg. MS Office Excel)

On top of that, the program greatly outdoes original goals – it can also

send data to device, program microchips and create proxy between serial

port and TCP socket. In comparison to other applications I’ve found (as

described in introduction) Lorris is also the only one which allows user to

write his own script to parse data.

Lorris has already been used in several real-world applications and it

also has growing ranks of satisfied users, as described in chapter 10.

48

The application is continuously being enhaced, it is possible to virtually

indefinitelly add either more widgets to Analyzer (compass, gauge meter,

...) or whole new modules (e.g. interface for cheap logic probe currently

in developmet by Martin Vejnár). The program consist from about 32

thousand lines of code (without thir-party libraries) at this time (3.4.2013).

Enclosed CD contains source code, orientation video and promotional

poster.

Figure 41: Lines of code counted by program CLOC[20]

In the future, I would like to continue in adding new features to both

computer and Android version of Lorris and in increasing of awarness about

this useful piece of software.

49

ATTACHMENT A:

Third-party libraries

• Qwt[22] is library for Qt Framework which contains several widgets

for techical applications – graphs, bars, compasses, gauge meters or

similar.

• QExtSerialPort[23] provides connection to serial port and also enu-

merates serial ports found in the computer.

• QHexEdit2[24] is hex editor used to show content of chip’s memory

in module Programmer. I changed few mostly visual details in this

library.

• Tango Icon Library[29] is set of icons released to the Public Doa-

main. Icons from this set on many places throughout the application.

• EcWin7[30] is library which provides API for progressbar built into

task bar items in Windows 7.

• QScintilla2[31] is advanced text editor for Qt

• PythonQt[33] – python bindings for Qt.

• Python[34] is programming language, Lorris uses several parts of it’s

interpreter in combination with Python Qt.

• Qt Solutions[36] is collection of several addon classes for Qt.

• libyb[37] is library which provides communication with the Shuputo

programmer

50

ATTACHMENT B:

Licenses

Lorris is released under the GNU GPLv3[25], licenses of used applications

and libraries are as follows:

• Qt Framework is released under GNU LGPLv2.1[26]

• Qwt is distrubuted under the Qwt license[27], which is based of GNU

LGPLv2.1

• QExtSerialPort is released under The New BSD License[28]

• QHexEdit2 is released under the GNU LGPLv2.1

• Tanto Icon Library[29] is released to the Public Domain

• EcWin7 is released under the GNU GPLv2

• QScintilla2 is released under the GNU GPL v2 a v3

• libenjoy[32] is released under the GNU LGPLv2.1

• PythonQt is released under the GNU LGPLv2.1

• Python is released under the PSF License agreement[35]

• Qt Solutions is distrubuted under The New BSD License

• libyb is released under the Boost Software License[38]

All of these licenses allow free usage and spreading of the code.

51

ATTACHMENT C:

References

[1] SerialChart – Analyse and chart serial data from RS-232 COM ports

http://code.google.com/p/serialchart/

(Prior to 2. 25. 2013)

[2] WinWedge – RS232 data collection software

http://www.taltech.com/products/winwedge/

(Prior to 2. 25. 2013)

[3] Advanced Serial Data Logger

http://www.aggsoft.com/serial-data-logger.htm

(Prior to 2. 25. 2013)

[4] StampPlot Pro – Graphical Data Acquisition and Control

http://www.selmaware.com/stampplot/index.htm

(Prior to 2. 25. 2013)

[5] LabVIEW – Laboratory Virtual Instrumentation Engineering Work-

bench

http://sine.ni.com/np/app/main/p/docid/nav-104/lang/cs/

(Prior to 3. 6. 2013)

[6] Qt – Cross–platform application and UI framework

http://qt-project.org/

(Prior to 2. 25. 2013)

[7] Debian Linux – The Universal Operating System

http://www.debian.org/

(Prior to 2. 25. 2013)

[8] GitHub – Social Coding

https://github.com

(Prior to 2. 25. 2013)

52

http://code.google.com/p/serialchart/
http://www.taltech.com/products/winwedge/
http://www.aggsoft.com/serial-data-logger.htm
http://www.selmaware.com/stampplot/index.htm
http://sine.ni.com/np/app/main/p/docid/nav-104/lang/cs/
http://qt-project.org/
http://www.debian.org/
https://github.com

[9] Making Applications Scriptable

http://qt-project.org/doc/qt-4.8/scripting.html

(Prior to 2. 25. 2013)

[10] XBoot – Extensible bootloader for ATMEL XMEGA microcontrollers

http://code.google.com/p/avr-xboot/

(Prior to 3. 6. 2013)

[11] SDL – Simple Directmedia Layer

http://www.libsdl.org/

(Prior to 2. 13. 2013)

[12] Pololu 3pi Robot

http://www.pololu.com/catalog/product/975

(Prior to 2. 25. 2013)

[13] Robotic day 2012

http://www.robotickyden.cz/2012/

(Prior to 2. 25. 2013)

[14] Robotic day 2012 – results of Line Follower standard competition

http://www.robotickyden.cz/2012/results/lfs.php

(Prior to 2. 28. 2013)

[15] Eurobot

http://www.eurobot.org/

(Prior to 2. 25. 2013)

[16] Eurobot 2011

http://www.eurobot.cz/eurobot2011.php

(Prior to 2. 25. 2013)

[17] Robotic day

http://www.robotickyden.cz/

(Prior to 3. 4. 2013)

53

http://qt-project.org/doc/qt-4.8/scripting.html
http://code.google.com/p/avr-xboot/
http://www.libsdl.org/
http://www.pololu.com/catalog/product/975
http://www.robotickyden.cz/2012/
http://www.robotickyden.cz/2012/results/lfs.php
http://www.eurobot.org/
http://www.eurobot.cz/eurobot2011.php
http://www.robotickyden.cz/

[18] Google Android – Operating system for smartphones

http://www.android.com/

(Prior to 2. 25. 2013)

[19] Google Play Store – Store with applications for Android OS

http://play.google.com/store

(Prior to 2. 14. 2013)

[20] CLOC – Count Lines of Code

http://cloc.sourceforge.net/

(Prior to 2. 25. 2013)

[21] DDM Junior, Dornych 2, Brno, 656 20

http://www.junior.cz

(Prior to 3. 4. 2013)

[22] Qwt – Qt Widgets for Technical Applications

http://qwt.sourceforge.net/

(Prior to 2. 25. 2013)

[23] QExtSerialPort – Qt interface class for old fashioned serial ports

http://code.google.com/p/qextserialport/

(Prior to 2. 25. 2013)

[24] QHexEdit2 – Binary Editor for Qt

http://code.google.com/p/qhexedit2/

(Prior to 2. 25. 2013)

[25] GNU General Public License v3

http://gplv3.fsf.org/

(Prior to 2. 25. 2013)

[26] GNU Lesser General Public License v2.1

http://www.gnu.org/licenses/lgpl-2.1.html

(Prior to 2. 25. 2013)

54

http://www.android.com/
http://play.google.com/store
http://cloc.sourceforge.net/
http://www.junior.cz
http://qwt.sourceforge.net/
http://code.google.com/p/qextserialport/
http://code.google.com/p/qhexedit2/
http://gplv3.fsf.org/
http://www.gnu.org/licenses/lgpl-2.1.html

[27] Qwt license

http://qwt.sourceforge.net/qwtlicense.html

(Prior to 2. 25. 2013)

[28] The New BSD License

http://www.opensource.org/licenses/bsd-license.php

(Prior to 2. 25. 2013)

[29] Tango Icon Library

http://tango.freedesktop.org/Tango Icon Library

(Prior to 2. 25. 2013)

[30] EcWin7 – Windows 7 taskbar progress indicator

http://www.msec.it/blog/?p=118

(Prior to 2. 25. 2013)

[31] QScintilla2 – Code editor

http://www.riverbankcomputing.co.uk/software/qscintilla/intro

(Prior to 2. 25. 2013)

[32] libenjoy – Small simple joystick library

https://github.com/Tasssadar/libenjoy

(Prior to 2. 25. 2013)

[33] PythonQt – Python bindings for Qt

http://pythonqt.sourceforge.net/

(Prior to 2. 25. 2013)

[34] Python, the programming language

http://www.python.org/

(Prior to 2. 25. 2013)

[35] PSF License agreement

http://docs.python.org/2/license.html

(Prior to 2. 25. 2013)

55

http://qwt.sourceforge.net/qwtlicense.html
http://www.opensource.org/licenses/bsd-license.php
http://tango.freedesktop.org/Tango_Icon_Library
http://www.msec.it/blog/?p=118
http://www.riverbankcomputing.co.uk/software/qscintilla/intro
https://github.com/Tasssadar/libenjoy
http://pythonqt.sourceforge.net/
http://www.python.org/
http://docs.python.org/2/license.html

[36] Qt Solutions, a collection of minor Qt add-ons

http://qt.gitorious.org/qt-solutions

(Prior to 2. 25. 2013)

[37] libyb, a collection of minor Qt add-ons

https://github.com/avakar/libyb

(Prior to 2. 25. 2013)

[38] The Boost Software License

http://www.boost.org/users/license.html

(Prior to 2. 25. 2013)

56

http://qt.gitorious.org/qt-solutions
https://github.com/avakar/libyb
http://www.boost.org/users/license.html

ATTACHMENT D: Large images

Figure 42: Data from the encoder processed by analyzer

Figure 43: Programming of robot’s behavior in module Analyzer

Figure 44: David, our robot, ended up on 4th place from the total of

eleven robots in national round of Eurobot 2011 competition

59

ATTACHMENT E:

List of Figures

1 Tab creation dialog . 9

2 Window divided to multiple parts 9

3 New update notification . 10

4 Ongoing update . 10

5 Module analyzer . 11

6 Widget aligment using grid and lines 12

7 Packet structure dialog . 13

8 Widgety . 14

9 Filter settings . 14

10 Widget: number . 15

11 Widget: bar . 16

12 Widget: color . 17

13 Widget: graph . 18

14 Curve settings dialog . 18

15 Widget: script . 19

16 Script editor . 20

17 Widget: circle . 21

18 Widget: canvas . 21

19 Widgets button and slider 22

20 Joystick settings in widget input 23

21 Widget status . 24

22 State definitions dialog . 25

23 Widget terminal . 25

24 Proxy between serial port and TCP socket 26

25 Module programmer . 27

60

26 Minimal interface of module programmer (left) along with

terminal . 28

27 Module terminal . 30

28 Color in analyzer module . 32

29 Magnetic encoder . 33

30 Rotation of the wheel . 34

31 Covered distance . 34

32 Speed and acceleration . 35

33 Encoder’s status . 35

34 Encoder’s controls . 36

35 PID regulator tuning . 38

36 Lorris mobile . 43

37 Lorris mobile – session selection 44

38 Lorris mobile – switching tabs 44

39 Lorris mobile – programmer 45

40 Lorris mobile – terminal . 46

41 Lines of code counted by program CLOC[20] 49

42 Data from the encoder processed by analyzer 57

43 Programming of robot’s behavior in module Analyzer 58

44 David, our robot, ended up on 4th place from the total of

eleven robots in national round of Eurobot 2011 competition 59

61

	Introduction
	Module: analyzer
	Module: programmer
	Module: terminal
	Module: proxy between serial port and TCP socket

	Motivation
	Requirements for application
	Present applications
	Comparison of applications

	Lorris
	Website and repository
	Application's structure
	Session
	Automatic updates

	Module: Analyzer
	Filters
	Widget: number
	Widget: bar
	Widget: color
	Widget: graph
	Widget: script
	Widget: circle
	Widget: canvas
	Widgets button and slider
	Widget: input
	Widget: status
	Widget: terminal

	Module: Proxy between serial port and TCP socket
	Proxy tunnel

	Module: programmer
	Shupito programmer
	UART tunnel

	Bootloader avr232boot
	Bootloader AVROSP

	Module: terminal
	Joystick support
	Usage examples
	Color sensor testing
	Encoder testing
	Tuning of PID regulator
	Developement of robot for Eurobot 2011 competition
	Robot's frame
	Debugging and adjusting of sensors
	Programming of robot's reactive behavior

	Android application
	Programmer
	Terminal

	Real world usage
	Conclusion
	ATTACHMENT A: Third-party libraries
	ATTACHMENT B: Licenses
	ATTACHMENT C: References
	ATTACHMENT D: Large images
	ATTACHMENT E: List of images

